280 research outputs found

    Planetesimal collisions in binary systems

    Full text link
    We study the collisional evolution of km-sized planetesimals in tight binary star systems to investigate whether accretion towards protoplanets can proceed despite the strong gravitational perturbations from the secondary star. The orbits of planetesimals are numerically integrated in two dimensions under the influence of the two stars and gas drag. The masses and orbits of the planetesimals are allowed to evolve due to collisions with other planetesimals and accretion of collisional debris. In addition, the mass in debris can evolve due to planetesimal-planetesimal collisions and the creation of new planetesimals. We show that it is possible in principle for km-sized planetesimals to grow by two orders of magnitude in size if the efficiency of planetesimal formation is relatively low. We discuss the limitations of our two-dimensional approach.Comment: 5 pages, 5 figures, accepted for publication in MNRA

    Low-mass planets in nearly inviscid disks: Numerical treatment

    Full text link
    Embedded planets disturb the density structure of the ambient disk and gravitational back-reaction will induce possibly a change in the planet's orbital elements. The accurate determination of the forces acting on the planet requires careful numerical analysis. Recently, the validity of the often used fast orbital advection algorithm (FARGO) has been put into question, and special numerical resolution and stability requirements have been suggested. In this paper we study the process of planet-disk interaction for small mass planets of a few Earth masses, and reanalyze the numerical requirements to obtain converged and stable results. One focus lies on the applicability of the FARGO-algorithm. Additionally, we study the difference of two and three-dimensional simulations, compare global with local setups, as well as isothermal and adiabatic conditions. We study the influence of the planet on the disk through two- and three-dimensional hydrodynamical simulations. To strengthen our conclusions we perform a detailed numerical comparison where several upwind and Riemann-solver based codes are used with and without the FARGO-algorithm. With respect to the wake structure and the torque density acting on the planet we demonstrate that the FARGO-algorithm yields correct results, and that at a fraction of the regular cpu-time. We find that the resolution requirements for achieving convergent results in unshocked regions are rather modest and depend on the pressure scale height of the disk. By comparing the torque densities of 2D and 3D simulations we show that a suitable vertical averaging procedure for the force gives an excellent agreement between the two. We show that isothermal and adiabatic runs can differ considerably, even for adiabatic indices very close to unity.Comment: accepted by Astronomy & Astrophysic

    Laboratory Photo-chemistry of PAHs: Ionization versus Fragmentation

    Get PDF
    Interstellar polycyclic aromatic hydrocarbons (PAHs) are expected to be strongly processed by vacuum ultraviolet photons. Here, we report experimental studies on the ionization and fragmentation of coronene (C24H12), ovalene (C32H14) and hexa-peri-hexabenzocoronene (HBC; C42H18) cations by exposure to synchrotron radiation in the range of 8--40 eV. The results show that for small PAH cations such as coronene, fragmentation (H-loss) is more important than ionization. However, as the size increases, ionization becomes more and more important and for the HBC cation, ionization dominates. These results are discussed and it is concluded that, for large PAHs, fragmentation only becomes important when the photon energy has reached the highest ionization potential accessible. This implies that PAHs are even more photo-stable than previously thought. The implications of this experimental study for the photo-chemical evolution of PAHs in the interstellar medium are briefly discussed

    Planetesimal Formation In Self-Gravitating Discs

    Full text link
    We study particle dynamics in local two-dimensional simulations of self-gravitating accretion discs with a simple cooling law. It is well known that the structure which arises in the gaseous component of the disc due to a gravitational instability can have a significant effect on the evolution of dust particles. Previous results using global simulations indicate that spiral density waves are highly efficient at collecting dust particles, creating significant local over-densities which may be able to undergo gravitational collapse. We expand on these findings, using a range of cooling times to mimic the conditions at a large range of radii within the disc. Here we use the Pencil Code to solve the 2D local shearing sheet equations for gas on a fixed grid together with the equations of motion for solids coupled to the gas solely through aerodynamic drag force. We find that spiral density waves can create significant enhancements in the surface density of solids, equivalent to 1-10cm sized particles in a disc following the profiles of Clarke (2009) around a solar mass star, causing it to reach concentrations several orders of magnitude larger than the particles mean surface density. We also study the velocity dispersion of the particles, finding that the spiral structure can result in the particle velocities becoming highly ordered, having a narrow velocity dispersion. This implies low relative velocities between particles, which in turn suggests that collisions are typically low energy, lessening the likelihood of grain destruction. Both these findings suggest that the density waves that arise due to gravitational instabilities in the early stages of star formation provide excellent sites for the formation of large, planetesimal-sized objects.Comment: 11 pages, 8 figures, accepted for publication in MNRA

    Porosity measurements of interstellar ice mixtures using optical laser interference and extended effective medium approximations

    Get PDF
    Aims. This article aims to provide an alternative method of measuring the porosity of multi-phase composite ices from their refractive indices and of characterising how the abundance of a premixed contaminant (e.g., CO2) affects the porosity of water-rich ice mixtures during omni-directional deposition. Methods. We combine optical laser interference and extended effective medium approximations (EMAs) to measure the porosity of three astrophysically relevant ice mixtures: H2O:CO2=10:1, 4:1, and 2:1. Infrared spectroscopy is used as a benchmarking test of this new laboratory-based method. Results. By independently monitoring the O-H dangling modes of the different water-rich ice mixtures, we confirm the porosities predicted by the extended EMAs. We also demonstrate that CO2 premixed with water in the gas phase does not significantly affect the ice morphology during omni-directional deposition, as long as the physical conditions favourable to segregation are not reached. We propose a mechanism in which CO2 molecules diffuse on the surface of the growing ice sample prior to being incorporated into the bulk and then fill the pores partly or completely, depending on the relative abundance and the growth temperature.Comment: 9 pages, 6 figures, 1 table. Accepted for publication in A&

    On the dynamics and collisional growth of planetesimals in misaligned binary systems

    Full text link
    Context. Abridged. Many stars are members of binary systems. During early phases when the stars are surrounded by discs, the binary orbit and disc midplane may be mutually inclined. The discs around T Tauri stars will become mildly warped and undergo solid body precession around the angular momentum vector of the binary system. It is unclear how planetesimals in such a disc will evolve and affect planet formation. Aims. We investigate the dynamics of planetesimals embedded in discs that are perturbed by a binary companion on a circular, inclined orbit. We examine collisional velocities of the planetesimals to determine when they can grow through accretion. We vary the binary inclination, binary separation, D, disc mass, and planetesimal radius. Our standard model has D=60 AU, inclination=45 deg, and a disc mass equivalent to the MMSN. Methods. We use a 3D hydrodynamics code to model the disc. Planetesimals are test particles which experience gas drag, the gravitational force of the disc, the companion star gravity. Planetesimal orbit crossing events are detected and used to estimate collisional velocities. Results. For binary systems with modest inclination (25 deg), disc gravity prevents planetesimal orbits from undergoing strong differential nodal precession (which occurs in absence of the disc), and forces planetesimals to precess with the disc on average. For bodies of different size the orbit planes become modestly mutually inclined, leading to collisional velocities that inhibit growth. For larger inclinations (45 degrees), the Kozai effect operates, leading to destructively large relative velocities. Conclusions. Planet formation via planetesimal accretion is difficult in an inclined binary system with parameters similar to those considered in this paper. For systems in which the Kozai mechanism operates, the prospects for forming planets are very remote.Comment: 24 pages, 16 figures, recently published in Astronomy and Astrophysic

    Spiral arms in scattered light images of protoplanetary discs: Are they the signposts of planets?

    Get PDF
    One of the striking discoveries of protoplanetary disc research in recent years are the spiral arms seen in several transitional discs in polarized scattered light. An interesting interpretation of the observed spiral features is that they are density waves launched by one or more embedded (proto)planets in the disc. In this paper, we investigate whether planets can be held responsible for the excitation mechanism of the observed spirals. We use locally isothermal hydrodynamic simulations as well as analytic formulae to model the spiral waves launched by planets. Then H-band scattered light images are calculated using a 3D continuum radiative transfer code to study the effect of surface density and pressure scaleheight perturbation on the detectability of the spirals. We find that a relative change of ∌3.5 in the surface density (ÎŽÎŁ/ÎŁ) is required for the spirals to be detected with current telescopes in the near-infrared for sources at the distance of typical star-forming regions (140 pc). This value is a factor of 8 higher than what is seen in hydrodynamic simulations. We also find that a relative change of only 0.2 in pressure scaleheight is sufficient to create detectable signatures under the same conditions. Therefore, we suggest that the spiral arms observed to date in protoplanetary discs are the results of changes in the vertical structure of the disc (e.g. pressure scaleheight perturbation) instead of surface density perturbations.This work has been supported by the DISCSIM project, grant agreement 341137 funded by the European Research Council under ERC-2013-ADG.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/mnras/stv104

    Modelling circumbinary protoplanetary disks II. Gas disk feedback on planetesimal dynamical and collisional evolution in the circumbinary systems Kepler-16 and 34

    Get PDF
    Aims. We investigate the feasibility of planetesimal growth in circumbinary protoplanetary disks around the observed systems Kepler- 16 and Kepler-34 under the gravitational influence of a precessing eccentric gas disk. Methods. We embed the results of our previous hydrodynamical simulations of protoplanetary disks around binaries into an N-body code to perform 3D, high-resolution, inter-particle gravity-enabled simulations of planetesimal growth and dynamics that include the gravitational force imparted by the gas. Results. Including the full, precessing asymmetric gas disk generates high eccentricity orbits for planetesimals orbiting at the edge of the circumbinary cavity, where the gas surface density and eccentricity have their largest values. The gas disk is able to efficiently align planetesimal pericenters in some regions leading to phased, non-interacting orbits. Outside of these areas eccentric planetesimal orbits become misaligned and overlap leading to crossing orbits and high relative velocities during planetesimal collisions. This can lead to an increase in the number of erosive collisions that far outweighs the number of collisions that result in growth. Gravitational focusing from the static axisymmetric gas disk is weak and does not significantly alter collision outcomes from the gas free case. Conclusions. Due to asymmetries in the gas disk, planetesimals are strongly perturbed onto highly eccentric orbits. Where planetesimals orbits are not well aligned, orbit crossings lead to an increase in the number of erosive collisions. This makes it difficult for sustained planetesimal accretion to occur at the location of Kepler-16b and Kepler-34b and we therefore rule out in-situ growth. This adds further support to our initial suggestions that most circumbinary planets should form further out in the disk and migrate inwards.Comment: 12 pages and 12 figure

    Forming Circumbinary Planets: N-body Simulations of Kepler-34

    Full text link
    Observations of circumbinary planets orbiting very close to the central stars have shown that planet formation may occur in a very hostile environment, where the gravitational pull from the binary should be very strong on the primordial protoplanetary disk. Elevated impact velocities and orbit crossings from eccentricity oscillations are the primary contributors towards high energy, potentially destructive collisions that inhibit the growth of aspiring planets. In this work, we conduct high resolution, inter-particle gravity enabled N-body simulations to investigate the feasibility of planetesimal growth in the Kepler-34 system. We improve upon previous work by including planetesimal disk self-gravity and an extensive collision model to accurately handle inter-planetesimal interactions. We find that super-catastrophic erosion events are the dominant mechanism up to and including the orbital radius of Kepler-34(AB)b, making in-situ growth unlikely. It is more plausible that Kepler-34(AB)b migrated from a region beyond 1.5 AU. Based on the conclusions that we have made for Kepler-34 it seems likely that all of the currently known circumbinary planets have also migrated significantly from their formation location with the possible exception of Kepler-47(AB)c.Comment: 6 pages, 5 figures, accepted for publication in ApJ
    • 

    corecore